Optimization of heteronuclear relayed coherence-transfer spectroscopy
نویسندگان
چکیده
منابع مشابه
C isotopomer analysis of glutamate by heteronuclear multiple quantum coherence-total correlation spectroscopy (HMQC-TOCSY).
13C has become an important tracer isotope for studies of intermediary metabolism. Information about relative flux through pathways is encoded by the distribution of 13C isotopomers in an intermediate pool such as glutamate. This information is commonly decoded either by mass spectrometry or by measuring relative multiplet areas in a 13C NMR spectrum. We demonstrate here that groups of glutamat...
متن کامل13C isotopomer analysis of glutamate by J-resolved heteronuclear single quantum coherence spectroscopy.
13C NMR isotopomer analysis is a powerful method for measuring metabolic fluxes through pathways intersecting in the tricarboxylic acid cycle. However, the inherent insensitivity of 13C NMR spectroscopy makes application of isotopomer analysis to small tissue samples (mouse tissue, human biopsies, or cells grown in tissue culture) problematic. (1)H NMR is intrinsically more sensitive than 13C N...
متن کاملMultiple-step relayed correlation spectroscopy: sequential resonance assignments in oligosaccharides.
A general property of the high-resolution proton NMR spectra of oligosaccharides is the appearance of low-field well-resolved resonances corresponding to the anomeric (H1) and H2 protons. The remaining skeletal protons resonate in the region 3-4 ppm, giving rise to an envelope of poorly resolved resonances. Assignments can be made from the H1 and H2 protons to their J-coupled neighbors (H2 and ...
متن کاملA powerful method of sequential proton resonance assignment in proteins using relayed 15N-1H multiple quantum coherence spectroscopy.
A powerful method of sequential resonance assignment of protein 1H-NMR spectra is presented and illustrated with respect to the DNA-binding protein ner from phage Mu. It is based on correlating proton-proton through-space and through-bond connectivities with the chemical shift of the directly bonded 15N atom. By this means, ambiguities arising from chemical shift degeneracy of amide proton reso...
متن کاملIn Vivo Heteronuclear Magnetic Resonance Spectroscopy.
Magnetic Resonance Spectroscopy is a technique that has the capability of measuring metabolites in vivo and, in appropriate conditions, to infer its metabolic rates. The success of MRS depends a lot on its sensitivity, which limits the usage of X-nuclei MRS. However, technological developments and refinements in methods have made in vivo heteronuclear MRS possible in humans and in small animals...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Magnetic Resonance (1969)
سال: 1985
ISSN: 0022-2364
DOI: 10.1016/0022-2364(85)90241-0